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Abstract 

Escherichia coli (E. coli) are normal inhabitants of the human large 

intestine. Most strains are harmless, but some strains acquire bacteriophage 

or plasmid DNA-encoding enterotoxins or invasion factors and become 

pathogenic. Escherichia coli O157: H7 is a chemoorganotrophic facultative 

anaerobe with both respiratory and fermentative metabolisms identified by 

biochemical tests and selective/chromogenic media. Cells are Gram-

negative straight rods about 1 µm2–6 µm and typically motile via 

peritrichous flagella. Zoonotic transmission of E. coli 0157:H7 occurs after 

consumption of undercooked meat or deficiently pasteurized dairy products 

or contact with contaminated fomites laden with Shiga toxin 

enterohemorrhagic E. coli. Zoonotic transmission of E. coli 0157:H7 

occurs after consumption of undercooked meat or deficiently pasteurized 

dairy products or contact with contaminated fomites laden with Shiga toxin 

enterohemorrhagic E. coli. Its importance in medicine is due its potential 

association with hemolytic uremic syndrome which is serious medical 

condition.  
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Introduction  

Escherichia coli (E. coli) are normal inhabitants of the human large 

intestine. Most strains are harmless, but some strains acquire bacteriophage 

or plasmid DNA-encoding enterotoxins or invasion factors and become 

pathogenic [30]. Despite the fact that E. coli as a commensal bacterium can 

be found in intestinal microflora of a variety of animals including man, not 

all the strains are harmless, and some can cause debilitating and sometimes 

fatal diseases in humans as well as mammals and birds [5]. Pathogenic 

strains are divided into intestinal pathogens causing diarrhea and 

extraintestinal E. coli (ExPEC) causing a variety of infections in both 



humans and animals including urinary tract infections (UTI), meningitis 

and septicemia [21].  

Diarrheagenic E. coli (DEC) strains are among the most common etiologic 

agents of diarrhea. Based on their specific virulence factors and phenotypic 

traits, it can be divided into enteropathogenic E. coli (EPEC), 

enterotoxigenic E. coli (ETEC), Vero toxin-producing/Shiga toxin-

producing E. coli (VTEC/STEC) which include its well-known subgroup 

enterohaemorrhagic E. coli (EHEC), enteroinvasive E. coli (EIEC), 

enteroaggregative E. coli (EAEC), and diffusely adherent E. coli (DAEC) 

[18-20]. EHEC serotype O157:H7 was first recognized in 1982 as a human 

pathogen associated with outbreaks of bloody diarrhea in Oregon and 

Michigan, U.S.A. [28] and is also linked to sporadic cases of Hemolytic 

uremic syndrome (HUS) in 1983. Since then, many outbreaks associated 

with EHEC have been reported in the United States and E. coli O157:H7 

has become one of the most important foodborne pathogens [1]. It acquired 

its importance as a culprit in causing Hemolytic uremic syndrome (HUS) 

in children. 

AIM OF STUDY 

To highlight the importance of the serotype E. coli O157:H7, clinical 

features of HUS, current status and future perspective of different 

immunization strategies and promising novel therapy 

Escherichia coli O157: H7 is a chemoorganotrophic facultative 

anaerobe with both respiratory and fermentative metabolisms identified by 

biochemical tests and selective/chromogenic media. Cells are Gram-

negative straight rods about 1 µm2–6 µm and typically motile via 

peritrichous flagella [11].  

The enterohaemorrhagic E. coli (EHEC) pathotype describes strains 

that can express a type 3 secretion system (T3SS) and produce Shiga toxin 



subtypes (Stx 1a, 2a, 2c, etc.), although the original definition also required 

an association with human disease [17] . most cases and outbreaks 

historically have involved the serotype O157:H7. However, with the 

development of better diagnostic tools, other serotypes and pathogenic 

groups of E. coli are now also becoming increasingly linked to sporadic 

cases and outbreaks [7]. E. coli O157:H7 became recognized as a human 

pathogen and a cause of foodborne disease in 1982, following two 

outbreaks of hemorrhagic colitis linked to the consumption of hamburgers 

[37] . 

 

 
Figure 1. E. coli O157:H7 culture on agar [46]  

Transmission  

Zoonotic transmission of E. coli 0157:H7 occurs after consumption 

of undercooked meat or deficiently pasteurized dairy products or contact 

with contaminated fomites laden with Shiga toxin enterohemorrhagic E. 

coli. Other causal etiologies of Shiga toxin enterohemorrhagic E. coli 

include exposure to contaminated water from potable drinking sources, 

swimming pools and lakes, contaminated food such as insufficiently 

cooked meats, inadequately washed leafy greens and fruits, unpasteurized 



drinks including apple juice, and direct contact with contaminated animals 

in petting farms [20] .  

Outbreaks 

The epidemiology of E. coli—associated infections varies widely 

depending on the type of strain involved. In the last years in Europe, E. coli 

outbreaks were mainly caused by various EHEC strains. 

STEC E. coli O104:H4 has been responsible for a large number of 

outbreaks in the recent years. During the spring of 2011, a novel E. coli 

O104:H4 serotype infected about 4,000 individuals in Central Europe, 

mainly in Germany, provoking more than 900 cases of HUS [25] .This 

particular pathogen demonstrated a combination of virulence factors from 

both EAEC and EHEC strains. A strain similar to the current outbreak strain 

had been previously isolated and characterized in Republic of Georgia. 

HUS cases were reported in several European countries (Data 2010). The 

prevalent serogroups identified are O157 (EHEC O157:H7 serotype is the 

predominant cause of HUS) and O26. The highly 

virulent EHEC O26:H11/H- serotype is emerging in Europe. E. coli 

O25b:H4/ST131 (sequence type 131) is an emerging disseminated 

multidrug-resistant ExPEC strain, causing a broad spectrum of diseases, 

mainly urinary tract infections. E coli O25b:H4/ST131 is widely distributed 

in Europe, with Spain and Italy most prominently 

affected [31] . 

Virulence factors 

The ability to produce one or more shiga toxins is a hallmark E. 

coli O157:H7 infection. However, toxin production is not sufficient to 

cause disease. Two other factors are indicted in contributing to the virulence 

of E. coli O157:H7. The first of these two factors is harboring a 60 MDa 



virulence plasmid (pO157), which encodes a hemolysin. The other factor is 

the locus of enterocyte effacement (LEE) [36].  

Shiga toxin  

The Shiga toxin family comprises three members. Shiga toxin, 

produced by Shigella dysenteriae type 1, is the prototype Shiga toxin. On 

the other hand, Stx1 and Stx2 are produced by the EHEC. Several variants 

of Stx2 have been identified as well and these include Stx2c, Stx2d, Stx2e, 

Stx2f, and Stx2g. These share 84–99% of the amino-acid sequence of Stx2 

but differ in some of its biological characteristics [44] . Shiga toxins induce 

an increase in chemokine synthesis from intestinal epithelial cells. This 

augments host mucosal inflammatory responses with release of 

interleukins, such as IL-8 and IL-1, in addition to Tumor Necrosis Factor 

(TNF). Activation of human endothelium by TNF or IL-1 leads to an 

increase in toxin receptor synthesis and hence increased sensitivity of the 

cell leading to increased cell death after exposure to the toxins [32]. 

Plasmid (pO157) 

All isolates of E. coli O157:H7 harbor the 60 MDa pO157 plasmid. 

This plasmid contains the hly operon encoding an enterohemolysin. This 

hemolysin, with the aid of specialized transport systems, may allow the 

bacterium to utilize the blood released into the intestine as a source of iron 

[28] .  

The locus of enterocyte effacement 

The locus of enterocyte effacement (LEE) is a 35.6 kb pathogenicity 

island inserted in the genome of some bacteria such as enteropathogenic E. 

coli, enterohemorrhagic E. coli, Citrobacter rodentium, and Escherichia 

albertii. LEE comprises the genes responsible for causing attaching and 

effacing lesions, a characteristic lesion that involves intimate adherence of 



bacteria to enterocytes, a signaling cascade leading to brush border and 

microvilli destruction, and loss of ions, causing severe diarrhea [15] . 

Mechanism of resistance  

Antimicrobial resistance is a major and increasing global healthcare 

problem. Since the introduction of the penicillin, a large number of bacteria 

have responded to the use of antibiotics with their ability to evolve and 

transmit antimicrobial resistance to other species [42] .  

As in humans, the use of antimicrobials leads to an increased 

incidence of resistance in both pathogenic and endogenous bacteria. E. coli 

is intrinsically resistant to therapeutic levels of penicillin G, the first β-

lactam introduced into clinical practice, because of its outer membrane 

barrier. E. coli is also resistant to several different classes of antibiotics with 

distinct mechanisms of action [22] .  In E. coli, β-lactamase production is 

the most important mediator of resistance to broad spectrum of β-lactams. 

β-lactamases constitute a wide class of enzymes, which are often encoded 

on plasmids, and are most commonly produced by Enterobacteriaceae in 

general and by E. coli in particular. 

β-lactamases confer resistance to penicillins and cephalosporins and are an 

emerging cause of multidrug resistance in Gram-negative bacteria [35].  

Clinical features of infection 

Symptoms of the diseases caused by STEC include abdominal 

cramps and diarrhoea that may in some cases progress to bloody diarrhoea 

(haemorrhagic colitis). Fever and vomiting may also occur. The incubation 

period can range from 3 to 8 days, with a median of 3 to 4 days. Most 

patients recover within 10 days, but in a small proportion of patients 

(particularly young children and the elderly), the infection may lead to a 

life-threatening disease, such as haemolytic uraemic syndrome (HUS). 

HUS is characterized by acute renal failure, haemolytic anaemia and 



thrombocytopenia (low blood platelets) [42]. HUS is defined by 

The leading cause of HUS in children is STEC infection with a bloody 

diarrhea episode preceding HUS, while in adults HUS is mainly related to 

genetic complement abnormalities or to underlying morbid conditions. Up 

to the mid-2000s, STEC O157:H7 serotype appeared as the most common 

cause of post-diarrheal HUS irrespective of the context (sporadic case 

patients or outbreak), while non O157:H7 serotypes were occasionally 

isolated from patients presenting with HUS [16]. 

All presentations of HUS share endothelial cell lesions leading to the 

common spectrum of thrombotic microangiopathy (TMA). TMA is defined 

by the presence, mostly in the kidney, of vascular endothelial cell damage: 

endothelial cell swelling and detachment from the basement membrane, 

splitting of the glomerular basement membrane with “double contours” 

aspect, fibrin and platelet thrombi in the glomerular capillaries and renal 

arterioles. These lesions are responsible for the triad of mechanical 

hemolytic anemia, platelet activation/aggregation leading to 

thrombi and thrombocytopenia, and kidney failure [6] . The HUS 

manifestations don’t only involve kidneys and blood, they involve the CNS, 

GIT system, liver involvement and pancreatic complication and others [26]. 

Detection of the microorganism 

The primary evaluation is by clinical examination and stool or blood 

cultures. In recent years, ELISA test has been designed to detect shiga 

toxins directly in stool samples. The test is rapid and has a good potential 

for shiga toxin detection since it can detect the presence of shiga toxin-

producing E. coli (STEC) or other shiga toxin-producing bacteria. Since 

shiga toxin type differentiation requires high cost monoclonal and 

polyclonal antibodies it is not widely used. Hybridization method is an 

effective, highly sensitive and specific molecular method for precise 

detection of shiga toxins, and uses non-radioactive substances [2] . 



 In contrast to serological and microbiological tests, PCR provides a 

rapid and sensitive alternative. This technique, first developed by Karch 

and Meyer, includes a primer pair from a conserved region of stx1 and stx2 

in homologous genes whose main defects were low Tm and ineffectiveness 

in different types of shiga toxins. In that regard, to detect different types of 

shiga toxins it is necessary to design a multiplex PCR with at least two pairs 

of primers to detect shiga toxin gene [24]. 

Treatment  

Treatment of EHEC-associated hemorrhagic colitis is supportive, 

with measures such as fluids and a bland diet. Antibiotics do not seem to 

reduce symptoms, prevent complications or decrease shedding, and they 

appear to increase the risk of HUS [23] . While the effects of specific 

antibiotics are still incompletely understood, current recommendations 

suggest that these drugs should be avoided if possible (although there may 

be some situations, such as complications, where this is not feasible). The 

use of antimotility agents in hemorrhagic colitis also seems to 

increase the risk for developing HUS [10] .  

The use of antibiotics in STEC infections has also been addressed in 

the Infectious Disease Society of America (IDSA) guidelines for the 

management of infectious diarrhea. Their previous edition, published in 

2001, stated that antibiotic administration should be avoided in suspected 

STEC infections, as their role remained unclear [27]. However, the 

recommendation does not appear to be widely implemented, as the rate of 

antibiotic administration in this setting remains high. The latest edition of 

the IDSA guidelines, published in October of 2017, strongly recommends 

against the use of antibiotics in infections caused by Stx2 producing STEC 

[39]. 



Treatment of STEC-HUS is mainly symptomatic. Patients require 

hospitalization in specialized departments familiar with the management of 

acute kidney injury (vascular access insertion by trained physicians, 

initiation and modality of dialysis, adapted to body weight in children) and 

HUS (packed blood red cell transfusions; detection, monitoring, and 

treatment of hypertension, neurological manifestations, intestinal 

complications, pancreatitis, ischemic cardiomyopathy) [4] . 

Specific treatments of STEC-HUS are lacking. Randomized trials 

did not show the benefit of anti-thrombotic/fibrinolytic or Stx binding 

agents, or plasma infusions. The benefit of plasma exchanges over 

supportive treatment was also most uncertain in large series of patients 

during the German STEC O104:H4 outbreak [21]. 

A study support the use of Eculizumab in the treatment of severe 

pediatric STEC associated HUS but need more trials to confirm [34]. 

Alternative therapies 

The worldwide emergence of multidrug-resistant bacteria has 

dramatically limited the number of antibiotics that retain activity against 

these pathogens. This problem has been further amplified by the dearth of 

novel classes of antibiotics. Therefore, development of novel therapeutic 

strategies for infectious diseases is high demand. In response, several new 

therapies have been developed, such as phage therapy, antimicrobial 

peptide therapy and combinations of two or more antibiotics [43]. 

The potential use of bacteriophages as therapeutic agents was 

recognized from the 1900s. However, this therapeutic approach was 

eclipsed by the discovery and use of antibiotics. Nevertheless, phage 

therapy was used for the treatment of human bacterial infections, mainly in 

Eastern Europe. Phages have a number of advantages that make them 

attractive for therapeutic use against bacteria. First, they are highly specific 



and can be very effective in lysing bacteria. Second, phages are safe as 

underscored by several clinical studies, and third, they can be readily 

modified to fight the emergence of new multiresistant bacterial strains. 

Many studies characterizing lytic phages specific for different E. coli 

strains have been published demonstrating their potential therapeutic value 

[40].  

In addition to therapeutic use of lytic phages, phage-encoded 

enzymes can be potentially used as an effective antibacterials against 

pathogens. Endolysins are hydrolase enzymes produced by phages at the 

end of their replication cycle to digest the bacterial cell wall for the release 

of progeny virions. Endolysins work equally well when applied 

exogenously to bacterial cells and thus these enzymes are potentials 

candidates as new antibacterial agents [14].  

Antimicrobial peptides (AMPs) are an abundant and diverse group 

of molecules that are produced by eukaryotic and prokaryotic organisms or 

encoded by phages. In eukaryotes, AMPs contribute to innate immune 

responses and defend organisms against potentially harmful microbes [33] 

Several AMPs are being developed as drugs. They are able to act against 

antibiotic-resistant pathogens and are less susceptible to bacterial resistance 

than conventional antibiotics. Synthetic AMPs have been also developed, 

with designs based on common structural elements in natural peptides. 

Numerous natural and synthetic AMPs have direct activity against wide 

range of microorganisms including Gram-positive and Gram-negative. 

There are also several reports in the literature regarding activity of AMPs 

against E. coli strains. Taken together, the results obtained so far highlight 

that AMPs represent a new promising therapeutic option for the treatment 

of bacterial diseases, including infections due to multidrug-resistant strains 

[30]. 



An alternative therapeutic strategy against multi-resistant bacteria 

could be the use of efflux pump inhibitors. Efflux is a well-known antibiotic 

resistance mechanism, bacteria being capable to export actively molecules 

from the cell using efflux pumps. Although not used in the clinical practice 

yet, the high therapeutic potential of the combination of efflux pumps 

inhibitors with antibiotics has been clearly demonstrated. Furthermore, this 

co-therapy would allow for the use of antibiotics normally compromised by 

efflux pump activity [38]. 

Prevention  

 People with higher chances for foodborne illness are pregnant 

women, newborns, children, older adults, and those with weak immune 

systems, such as people with cancer, diabetes, or HIV/AIDS [8] . Washing 

hands, food and cooking tool, keeping proper hygiene, cooking meat 

properly and buying from trusted stores are the main personal methods of 

prevention of the infection [30] .  

There are many industrial methods of disinfection and prevention 

include disinfection with certain chemicals and treating the suspected 

animals with antibiotics. A study conducted by de Oliveira et al., [32] 

demonstrated the direct and indirect application of ozone produced 

significant reductions in the counts of E. coli O157:H7, proving its 

efficiency in controlling this pathogen, where the maximum reduction was 

obtained under the conditions evaluated, allows for recommending its use 

in the cleaning processes of equipment and utensils in the food industry 

[13] .  

Ultrasonic treatment is a promising alternative for thermal 

sterilization in food industry, the US treatment had a good antibacterial 

effect on E. coli O157:H7. After the US treatment, the cell membrane of 

bacteria was destroyed, leading to the leakage of intracellular material. 



Meanwhile, The US treatment also caused the inhibition of the Hexose 

Monophosphate Pathway of the bacteria. Finally, the loss of E. coli 

O157:H7 cell viability in vegetable juices was observed under the optimal 

US treatment condition (exposure time of 7 min, ultrasonic power of 100 

W and ultrasonic intensity of 50 W/cm2) [29].  

Vaccinating the host animal is an important topic in prevention. In 

theory, the benefit of vaccination within discrete populations (e.g., pens or 

herds of cattle) is reduced fecal-oral transmission within cattle 

environments, less contamination of cattle hides, and fewer pathogens 

carried into the abattoir at harvest. For vaccination to be useful as a 

preharvest intervention, the benefits must not be undone during subsequent 

management practices, such as transportation to the abattoir or during 

holding in lairage [12].  

 E. coli as Biological weapons 

Escherichia coli is present in the Centers for Disease Control and 

Prevention (CDC) list of biological agents potentially threat to public health 

and safety. Several microorganisms or their products can be used as 

biological weapon for warfare and bioterrorism. The CDC classifies 

potential agents as biological weapon in three categories. In Category A 

agents which can be easily disseminated or spread from person to person, 

resulting in high mortality rate and impact on public health are listed. 

Category B lists pathogens moderately easy to disseminate, resulting in 

moderate morbidity rates and low mortality rates. Category C lists 

emerging pathogens with potentially high morbidity and mortality 

and which can be engineered for mass dissemination [9] . E. coli O157:H7 

strain is present in Category B as “food safety threat”. Even though less 

dangerous than Category A agents, Category B agents are easier to produce 

and handle, and the use of such agents against civilian populations by 

terrorists might well cause considerable panic [3] . 



 Conclusion 

E. coli infection and food poisoning represent a major health issue in 

both developed and developing countries and the need for urgent solutions 

and advance research in prevention, management and minimizing the post 

infection complication, is crucial. 
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