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Abstract
Branched-chain amino acids (BCAAs) are essential amino acids which have critical roles in protein synthesis and energy 
metabolism in the body. In the heart, there is a strong correlation between impaired BCAA oxidation and contractile dys-
function in heart failure. Plasma and myocardial levels of BCAA and their metabolites, namely branched-chain keto acids 
(BCKAs), are also linked to cardiac insulin resistance and worsening adverse remodelling in the failing heart. This review 
discusses the regulation of BCAA metabolism in the heart and the impact of depressed cardiac BCAA oxidation on cardiac 
energy metabolism, function, and structure in heart failure. While impaired BCAA oxidation in the failing heart causes the 
accumulation of BCAA and BCKA in the myocardium, recent evidence suggested that the BCAAs and BCKAs have divergent 
effects on the insulin signalling pathway and the mammalian target of the rapamycin (mTOR) signalling pathway. Dietary 
and pharmacological interventions that enhance cardiac BCAA oxidation and limit the accumulation of cardiac BCAAs and 
BCKAs have been shown to have cardioprotective effects in the setting of ischemic heart disease and heart failure. Thus, 
targeting cardiac BCAA oxidation may be a promising therapeutic approach for heart failure.
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Introduction

The heart has the highest energy demand of any organ in 
the human body [1]. Maintaining fuel supply and energy 
production to the heart is vital in sustaining its contractile 
function and ensuring body survival. However, the heart also 
has minimal energy storage capacity (in the form of adeno-
sine triphosphate (ATP)). If not replenished, the heart will 
run out of ATP in just 2–10 s [1, 2], which leads to contrac-
tile failure. The heart also has limited ability for gluconeo-
genesis, lipogenesis, or ketogenesis. Therefore, the heart is 
equipped with complex and efficient machinery to utilize a 
variety of oxidative substrates to generate ATP. The ability 
of the heart to switch between different oxidative substrates 
gives the heart “metabolic flexibility” to adapt to differ-
ent workloads, substrates availability and neurohormonal 

activity. The majority of cardiac ATP (~ 90%) is produced 
via mitochondrial oxidative metabolism, while glycolysis 
contributes ~ 10% of the heart’s ATP production [3, 4]. 
Therefore, disrupted oxygen supply could compromise car-
diac ATP production and lead to cardiac failure.

Fatty Acid, Glucose, Ketone, and BCAA 
Metabolism in the Normal Healthy Heart

Fatty acids are a major fuel source for the heart, and the 
mitochondrial ß-oxidation of fatty acid typically provides 
40–60% of the heart’s energy needs [5, 6]. Fatty acids are 
initially esterified, forming fatty acyl-CoA following uptake 
into the cardiomyocyte. The fatty acid moiety is then trans-
ferred to carnitine by carnitine palmitoyltransferase 1 (CPT-
1) in the cytosol to form a long-chain acylcarnitine [7], 
which is then shuttled to the mitochondria. The fatty acid 
group is again transferred to CoA to form fatty acyl-CoA, 
which enters β-oxidation to produce acetyl-CoA, which 
feeds into the tricarboxylic acid (TCA) cycle [1, 8]. Glucose 
is another primary substrate in the heart, and it contributes 
20–40% of the heart’s energy needs [9]. Glucose is mainly 
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taken up into the cardiomyocyte via insulin-independent and 
insulin-dependent glucose transporters (GLUT), namely 
GLUT1 and GLUT4, respectively. Although the heart is an 
insulin-sensitive organ and insulin markedly stimulates car-
diac glucose uptake, the contribution of insulin-dependent 
vs insulin-independent glucose uptake in the heart is still not 
clear and needs to be directly investigated. Glucose is con-
verted to pyruvate and generates ATP via glycolysis (2 ATP/
glucose molecule) in the cytosol [1, 2]. Pyruvate is taken up 
by the mitochondria via the mitochondrial pyruvate carrier 
(MPC) and oxidized via mitochondrial glucose oxidation (29 
ATP/2 molecules of pyruvate) [1, 2].

Ketone bodies, namely β-hydroxybutyrate (βOHB), 
acetoacetate (AcAc), and acetone, also contribute around 
15–20% of the overall cardiac ATP production [10, 11]. 
Ketone bodies are taken up by the heart via SLC16A1 
and transported to the mitochondria, where βOHB, the 
major ketone body in the heart, is oxidized to AcAc via 
β-hydroxybutyrate dehydrogenase 1 (BDH1) [11]. AcAc is 
then converted to acetoacetyl-CoA (AcAc CoA) by succi-
nyl-CoA:3 oxoacid-CoA transferase (SCOT), which is then 
converted to acetyl CoA via thiolase. The heart can readily 
oxidize ketone bodies, and ketone bodies’ contribution as 
a source of acetyl CoA for the TCA cycle increases when 
circulating ketone body levels increase [10].

The heart can also utilize a variety of amino acids, includ-
ing branched-chain amino acids (BCAAs), glutamate, cys-
tine, histidine, and lysine, as a source of fuel. Among the 
nine essential amino acids, leucine, isoleucine, and valine 
have a branched aliphatic side chain and thus are grouped 
as BCAAs. Meat, fish, egg, and dairy products have a high 
content of BCAAs. Similar to other amino acids, BCAAs 
play an important role in protein synthesis and neurotrans-
mitter synthesis [12–16]. In addition, BCAAs also modulate 
food intake and glycemic control via influencing hormones 
release, such as leptin, glucagon-like peptide-1, and ghrelin 
[17–19] (see [20, 21] for a general review of BCAA metabo-
lism). In the heart mitochondria, BCAAs undergo transami-
nation. They are converted to their correspondent branched-
chain keto acids (BCKAs), namely α-ketoisocaproate 
(produced from leucine), α-keto-β-methylvalerate (produced 
from isoleucine), and α-ketovalerate (produced from valine), 
by mitochondrial branched-chain amino-transaminase 
(BCATm) (Fig. 1) [1, 2, 21]. Transamination by BCATm 
is a reversible process, which can convert BCKAs back 
to BCAAs [22]. BCKA is then acted on by mitochondrial 
branched-chain α-keto acid dehydrogenase (BCKDH) and is 
eventually converted to either acetyl-CoA for the TCA cycle 
or succinyl-CoA for anaplerosis [1, 21]. BCKDH activity is 
dependent on its phosphorylation status, where it is dephos-
phorylated and activated by mitochondrial protein phos-
phatase 2C (PPC2m) [23] or phosphorylated and inhibited 
by mitochondrial branched-chain α-keto acid dehydrogenase 

kinase (BCKDK) [24]. Direct measurement of BCAA oxida-
tion in vivo shows that they are only a minor fuel source for 
the heart, contributing to ~ 1–2% of the overall cardiac ATP 
production [6, 25].

BCAA Metabolism in the Failing Heart

Compromised cardiac energy metabolism is a major con-
tributor to the development of heart failure and a key deter-
minant of its progression [1, 26]. While heart failure is mul-
tifactorial, there is a consensus that the failing heart is an 
“engine out of fuel” [26] due to altered heart preference for 
oxidative substrates and disrupted mitochondrial oxidative 
phosphorylation. Alterations in cardiac preference for oxi-
dative substrates and how these alterations influence heart 
failure severity were comprehensively reviewed elsewhere 
(see [1] for review). Here, we review the current knowledge 
of the changes in BCAA metabolism that occur in heart fail-
ure and how these changes impact cardiac function, struc-
ture, and energy metabolism. Despite their minor role as 
fuel to support contractile function in the heart, BCAAs are 
important signalling molecules that can influence cardiac 
energy metabolism via modulating signalling pathways in 

Fig. 1  Branched-chain amino acid (BCAA) metabolism in the normal 
heart. BCAAs are taken up by the cardiomyocyte and transported to 
the mitochondria, where the BCAAs are converted to branched-chain 
keto acids (BCKAs) by mitochondrial branched-chain aminotrans-
ferase (BCATm). BCKAs are then used by branched-chain acid 
α-keto acid dehydrogenase (BCKDH) to eventually produce acetyl 
CoA and succinyl CoA that feeds into the tricarboxylic acid (TCA) 
cycle. BCKDH is phosphorylated and inactivated by phosphoryla-
tion of branched-chain α-keto acid dehydrogenase kinase (BCKDK), 
while it is dephosphorylated and activated by mitochondrial protein 
phosphatase 2 C (PP2Cm)
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the heart, such as the insulin signalling pathway and the 
mammalian target of rapamycin (mTOR) signalling pathway. 
Elevated levels of circulating BCAAs and BCKAs have been 
proposed to be a predictor of coronary heart disease (Fig. 2) 
[27–29], congestive heart failure [30], and the incidence of 
cardiovascular disease [31–33] in human. Similarly, aug-
mented levels of circulating BCAAs and BCKAs are also 
seen in preclinical models of myocardial infarction [34, 35], 
myocardial ischemia/reperfusion injury [36], and heart fail-
ure [37, 38]. We propose that the high levels of BCAAs and 
BCKAs seen in heart failure can negatively impact cardiac 
function by acting as signalling molecules to negatively 
impact cardiac energy metabolism.

High plasma levels of BCAA and BCKA have the poten-
tial to increase BCAA contribution to the cardiac ATP 
production in the failing heart. However, it is unlikely that 
this could improve energy production in the failing heart 
due to the minimal contribution of BCAA to cardiac ATP 
production. For example, BCAA contributes to ~ 2% of the 
total cardiac ATP production [6, 25], so doubling this con-
tribution, mainly driven by elevated plasma BCAA levels, 
would only account o ~ 4% of total cardiac ATP production. 
Regardless, emerging data suggests that BCAA oxidation 

is impaired in the failing heart, contributing to the rise in 
BCAA and BCKA levels in the failing heart. Studies have 
shown that BCAA oxidation key enzymes expressions are 
downregulated in experimental models of compensated heart 
failure [39], decompensated heart failure [39], and dilated 
cardiomyopathy [38]. BCAA oxidation enzyme protein lev-
els are also decreased in a mouse model of dilated cardio-
myopathy [40], accompanied by accumulation of BCAAs 
[40] and BCKAs [38] in failing hearts. In line with that, 
ex vivo preclinical studies have shown that BCAA oxidation 
is impaired in murine models of ischemia/reperfusion injury 
[36], myocardial infarction [34, 41], and pressure-overload-
induced heart failure [41]. The accumulation of BCAAs and 
BCKAs in heart failure has been linked to activating the 
mTOR signalling pathway, a critical hypertrophic signalling 
pathway, in murine models of heart failure (Fig. 2) [34, 42]. 
For instance, whole-body BCATm deletion impairs BCAA 
oxidation and significantly increases circulating BCAA lev-
els and accumulation of cardiac BCAAs [43]. Accumula-
tion of cardiac BCAAs is accompanied by triggering the 
mTOR signalling pathway and hypertrophy of the heart, 
kidneys, and spleen [43]. Significantly, cardiac hypertrophy 
can be reversed by feeding BCATm knockout mice a diet 

Fig. 2  Alteration in plasma levels and oxidation of cardiac branched-
chain amino acids (BCAAs) in heart failure. Circulating BCAA and 
BCKA levels are elevated in heart failure. Cardiac BCAA oxidation 
rates are impaired in the failing heart, associated with the accumu-
lation of BCAA and BCKA in the myocardium. Accumulation of 
BCAA is more important than BCKAs in triggering the mamma-
lian target of rapamycin (mTOR) signalling pathway and worsening 
adverse remodelling in the failing heart. In contrast, BCKA accu-

mulation inhibits the cardiac insulin signalling pathway and insulin-
stimulated cardiac glucose oxidation, which negatively impacts car-
diac adenosine triphosphate (ATP) production. Collectively, impaired 
cardiac BCAA oxidation rates further aggravate contractile dysfunc-
tion in the failing heart. BCATm mitochondrial branched-chain ami-
notransferase, BCKDH branched-chain acid alpha-keto acid dehydro-
genase, BCKDK branched-chain acid alpha-keto acid dehydrogenase 
kinase, PP2Cm mitochondrial protein phosphatase 2 C
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supplemented with rapamycin, suggesting that mTOR is the 
primary mediator of BCAAs-induced cardiac hypertrophy 
[43]. Recently, we have shown that cardiac-specific deletion 
of BCATm causes a significant increase in cardiac BCAA 
levels along with a significant reduction in cardiac BCKA 
levels and BCAA oxidation rates ex vivo, with no signifi-
cant effect on circulating BCAA or BCKA levels [44]. This 
BCAA accumulation in the BCATm deficient heart triggers 
the mTOR signalling pathway and causes cardiac hyper-
trophy [44]. In further support of that, studies have also 
demonstrated that enhancing BCAA oxidation or inhibition 
of mTOR can improve cardiac function [38]. Furthermore, 
BCAAs supplementation following myocardial infarction 
aggravates cardiac hypertrophy and further deteriorates 
cardiac function in the infarcted mouse heart [35].

One of the significant metabolic alterations that occur 
in the failing heart is cardiac insulin resistance, mainly due 
to impaired cardiac insulin signalling in preclinical models 
and human [45–57]. Insulin plays a critical metabolic role 
in the heart, regulating cardiac reliance on fatty acid and 
glucose for energy production. Cardiac insulin resistance 
is mainly manifested by a decrease in insulin-stimulated 
glucose uptake and insulin-stimulated glucose oxidation, 
changes that negatively impact cardiac energy metabolism 
in heart failure [45–57]. Moreover, cardiac insulin resistance 
further aggravates contractile dysfunction in heart failure 
[45–55]. In addition, cardiac insulin resistance seen in obe-
sity or heart failure is exacerbated if both co-exist in preclin-
ical models and humans [34, 58–64]. Of importance is that 
impaired cardiac BCAA oxidation enzymes expressions and 
activities have been linked to worsening of cardiac insulin 
resistance and cardiac dysfunction in heart failure patients 
and murine models of aortic constriction [38], myocardial 
infarction [34], and myocardial ischemia/reperfusion [36]. 
Furthermore, augmented BCAA [36] and BCKA [65] levels 
inhibit the activity of the pyruvate dehydrogenase (PDH) 
enzyme, the rate-limiting enzyme in mitochondrial glucose 
oxidation, that further limits glucose oxidation in the fail-
ing heart [34]. While the association between the alterations 
in BCAA metabolism and different types of heart diseases, 
including heart failure with reduced ejection fraction, myo-
cardial infarction, and ischemia/reperfusion injury, compen-
sated and decompensated heart failure has been reported, 
and it is still not clear whether this association also occur in 
other types of heart failure such as diabetic cardiomyopathy, 
heart failure with preserved ejectin fraction, or end-stage 
heart failure.

Since impaired BCAA oxidation leads to the accumula-
tion of cardiac BCAAs and BCKAs, the question is raised 
whether the BCAAs or the BCKAs are more important in 
mediating cardiac insulin resistance and cardiac hypertro-
phy. Delineating how these metabolites influence insulin 
and mTOR signals are challenging because BCAAs can be 

converted to BCKAs and vice versa via the BCATm enzyme. 
Recent studies have shown that acute exposure of the heart 
to high levels of α-ketoisovalerate ex vivo increases valine 
levels [66]. However, it is not clear how the accumulation 
of valine in the myocardium influences insulin signalling, 
energy metabolism, cardiac function, or structure [66]. How-
ever, we recently generated a mouse colony where BCATm 
is specifically deleted from the heart  (BCATmCardiac−/−), 
which offers the opportunity to delineate the role of BCAA 
from those of BCKA on cardiac hypertrophy and insulin 
signalling [44]. Cardiac-specific deletion of BCATm causes 
a significant increase in cardiac BCAA levels and a signifi-
cant decrease in cardiac BCKA levels while also decreasing 
cardiac BCAA oxidation rates ex vivo [44]. Interestingly, 
BCAA accumulation in the  BCATmCardiac−/− hearts was 
accompanied by activation of the cardiac mTOR signalling 
pathway and increased left ventricular mass. Since BCAA 
levels are increased in these hearts, it suggests that BCAAs, 
not BCKAs, trigger the hypertrophic signalling in the heart 
[44].

Of interest, the decreased cardiac BCKA levels in the 
 BCATmCardiac−/− hearts are associated with enhanced car-
diac insulin signalling and insulin-stimulated glucose oxi-
dation rates ex vivo [44]. Since BCAA levels are decreased 
in these hearts, these findings suggest that BCKAs, not 
BCAAs, have an inhibitory effect on cardiac insulin signal-
ling. In further support of this, perfusing normal and healthy 
mice hearts with high levels of BCKAs, in the absence of 
BCAAs, inhibits cardiac insulin signalling and abolishes 
insulin-stimulated glucose oxidation rates ex vivo [44]. Of 
importance is that high BCKA levels ex vivo have no signifi-
cant effect on cardiac mTOR activity [44]. Together, these 
data support divergent effects of BCAAs and BCKAs on 
insulin signalling and mTOR signalling in the heart.

Therapeutic Strategies Targeting BCAA 
Metabolism to Treat Heart Failure

Recognizing the detrimental effects of augmented lev-
els of plasma BCAA and BCKA and impaired cardiac 
BCAA oxidation on cardiac energy metabolism, function, 
and structure, different approaches have been explored to 
enhance cardiac BCAA oxidation and reduce plasma lev-
els of BCAA in preclinical models of heart failure [35–38]. 
One of the potential targets to enhance BCAA oxidation 
and reduce the accumulation of cardiac BCAAs is via 
stimulating BCATm enzyme. Acute inhibition of BCAT 
in the whole body, using an orally active BCAT inhibitor 
(2-[(4-chloro-2,6-difluorobenzyl)amino]-7-oxo-5-propyl-
4,7-dihydropyrazolo(1,5-a)-pyrimidine-3-carbonitrile), 
causes a significant increase in the plasma levels of BCAA 
[67], suggesting impaired whole-body BCAA oxidation. 
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Therefore, enhancing flux through BCATm can increase 
BCAA oxidation and reduce cardiac levels of BCAA, which 
could have beneficial effects in reducing adverse remodel-
ling in the failing heart. We have recently provided the first 
direct evidence that selective increase in cardiac BCAA lev-
els by cardiac-specific deletion of BCATm triggers cardiac 
hypertrophy via stimulating the mTOR signalling pathway 
[44]. In addition, cardiac-specific deletion of BCATm mark-
edly decreases cardiac BCKA levels and enhances insulin-
stimulated cardiac glucose oxidation rates ex vivo [44]. 
However, it should be emphasized that increasing the flux 
through BCATm can potentially increase cardiac BCKA 
levels (Fig. 3A). This is significant since we have demon-
strated that BCKAs exert an inhibitory effect on cardiac 
insulin signalling and insulin-stimulated glucose oxidation 
rates ex vivo [44]. However, the challenge with inhibiting 
BCATm activity is that it will lead to the accumulation of 
BCAA (Fig. 3B), which can trigger the mTOR signalling 
and causes cardiac hypertrophy [44]. Therefore, targeting 
BCATm may not be a plausible therapeutic approach to treat 
heart failure, although this needs to be directly investigated.

Another approach to target BCAA oxidation is via stim-
ulating BCKDH enzyme. Compared to BCATm, enhanc-
ing the flux through BCKDH enhances BCAA oxidation 
and decreases both BCAA and BCKA levels. For instance, 
3,6-dichlorobenzo(b)thiophene-2-carboxylic acid (BT2) is 
an allosteric inhibitor of BCKDK enzyme [68], which (by 

inhibiting BCKDH phosphorylation) increases BCAA oxi-
dation by enhancing the activity of BCKDH (Fig. 3C). Thus, 
treatment with BT2 enhances cardiac function and mitigates 
adverse remodelling in murine models of ischemic and fail-
ing hearts by promoting BCAA oxidation not only in the 
heart but in the whole body. It is worth mentioning that the 
contribution of accelerating whole-body BCAA metabolism 
in the cardioprotection established by BT2 treatment is still 
not clear. Nevertheless, studies have shown that BT2 treat-
ment reduces the accumulation of cardiac BCAAs [40, 69] 
and BCKAs [38, 69].

BCAA oxidation could also be modulated by altering 
PP2Cm, the enzyme that dephosphorylates and activates 
BCKDH (Fig. 3D). Studies have shown that PP2Cm deletion 
impairs cardiac BCAA oxidation, as evidenced by increased 
BCAA and BCKA levels in the mouse heart [38]. Further-
more, PP2Cm deletion increases the heart’s vulnerability to 
contractile dysfunction in a mouse model of pressure-over-
load-induced heart failure [38]. It has also been proposed 
that the accumulation of cardiac BCKA could negatively 
impact mitochondrial energetics. For example, incubation 
of heart mitochondria with high levels of BCKAs in vitro 
inhibits the activity of complex I, but not complex II, in 
a dose-dependent manner [38]. BCKAs accumulation in 
PP2Cm-deficient mitochondria in vitro promotes super-
oxide production and increases carbonylation levels in the 
mitochondria [38]. These findings suggest that BCKAs may 

Fig. 3  Therapeutic targets manipulating BCAA metabolism and their 
impacts on cardiac BCAA and BCKA levels. A Stimulation of mito-
chondrial branched-chain aminotransferase (BCATm) decreases car-
diac BCAA levels while increasing cardiac BCKA levels, which can 
impair cardiac insulin signalling. B Inhibition of BCATm decreases 

cardiac BCKAs levels while increasing cardiac BCAA levels, trigger-
ing the mammalian target of rapamycin (mTOR) signalling pathway. 
C Inhibition of branched-chain acid alpha-keto acid dehydrogenase 
kinase (BCKDK) or D stimulation of mitochondrial protein phos-
phatase 2 C (PP2Cm) decreases both cardiac BCAAs and BCKAs
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directly influence mitochondrial bioenergetics and enhance 
oxidative injury to cardiac proteins. However, the exact 
mechanism(s) through which these effects are mediated are 
yet to be determined.

Dietary interventions to reduce BCAA and BCKA supply 
to the heart have also been explored. For example, restricting 
BCAAs in the diet of Zucker fatty rats showed a beneficial 
effect on cardiac ATP production and reduced triacylglyc-
erol levels via promoting fatty acid utilization. However, the 
mechanism is not known yet [70]. Moreover, recent studies 
have shown that weight loss during lifestyle intervention 
enhances BCAA catabolism and improves insulin sensitivity 
in adolescence with obesity [71].

Conclusions

Alterations in cardiac BCAA oxidation are linked to car-
diac insulin resistance and adverse remodelling in the failing 
heart. Cardiac BCAA oxidation is impaired in heart failure 
due to the downregulation of its key enzymes, resulting in 
the accumulation of both BCAAs and BCKAs in the failing 
heart. BCAAs and BCKAs seem to have more important 
roles as signalling molecules than oxidative substrates for 
the heart. Recently evidence suggests that BCAAs are more 
critical in triggering the mTOR signalling pathway and pro-
moting cardiac hypertrophy in the failing heart. At the same 
time, BCKAs have an inhibitory effect on cardiac insulin 
signalling and insulin-stimulated glucose oxidation. Of 
importance, pharmacological targeting of BCAA oxidation 
has emerged as a novel therapeutic approach to improving 
cardiac function, reducing adverse remodelling, and mitigat-
ing cardiac insulin resistance in heart failure.
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