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Abstract: Recently, pattern recognition in audio signal processing using electroencephalography
(EEG) has attracted significant attention. Changes in eye cases (open or closed) are reflected in
distinct patterns in EEG data, gathered across a range of cases and actions. Therefore, the accuracy of
extracting other information from these signals depends significantly on the prediction of the eye
case during the acquisition of EEG signals. In this paper, we use deep learning vector quantization
(DLVQ), and feedforward artificial neural network (F-FANN) techniques to recognize the case of
the eye. The DLVQ is superior to traditional VQ in classification issues due to its ability to learn a
code-constrained codebook. On initialization by the k-means VQ approach, the DLVQ shows very
promising performance when tested on an EEG-audio information retrieval task, while F-FANN
classifies EEG-audio signals of eye state as open or closed. The DLVQ model achieves higher
classification accuracy, higher F score, precision, and recall, as well as superior classification abilities
as compared to the F-FANN.

Keywords: signal processing; information retrieval; deep learning vector quantization; feedforward
artificial neural network; electroencephalography; classification

1. Introduction

The human brain is made up of an enormous number of nerve cells that interact
with one another in a sophisticated network using electrical signals. These signals are
transmitted to the cell body after passing through electrochemical solutions in order to
modify their impact on that cell’s output signal. The electrical signal’s current, which
travels through these cells, modifies the electrical polarity at the connections between the
cell body and dendrites, in which the electrochemical solution can be found [1]. The output
of the cell is controlled by the electrochemical junctions’ conductivity and updates its
state in response to inputs, which is determined by both conscious decision making and
environmental feedback [2]. As a result, a lot of focus has been placed on examining the
electrical impulses that are sent and received by various brain regions during various
actions and states. Despite the availability of various techniques for tracking brain activity
in response to specific state, one of the most common practices is the use of EEG, which
involves keeping tabs on the brain’s electrical signals [3]. This method is gaining popularity,
as it is inexpensive and compact equipment is required to gather the signals in compari-
son to the other methods, such as functional magnetic resonance imaging (fMRI); this is
dependent on monitoring variations in cerebral blood flow during certain states or the
performance of various tasks [4]. As a result, in recent years, a greater emphasis has been
placed on the analysis of EEG data in order to identify these activities and states, plus the
detection of anomalies in these signals for use in medicine [5]. A variety of applications
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and services have used the analysis of EEG signals, such as medical diagnoses and the
brain–computer interface (BCI). BCI enables users of computers to operate without any
direct physical contact, where EEG data are examined in order to determine the computer
task that will be needed [6]. EEG signals are frequently used with anomaly detection to
forecast various diseases. However, in addition to the advantages of understanding the
subject’s condition at the moment, the EEG data gathered at the same states and actions
have shown various EEG patterns in various states of the eye [7]. Eyes often exist in one
of two states, which are either closed, known as eye closed (EC) or open, known as eye
open (EO). This conduct demonstrates the significance of determining the eye’s condition
before performing any additional EEG data analysis [8]. Recent years have seen remarkable
progress in the pattern-detecting power of DL methods, which have been applied to an
ever-increasing amount of input data and analyze the relations between these inputs in
order to extract the required knowledge from these data [9].

Processing could be greatly simplified by DL via autonomous end-to-end learning
of feature extraction, classification, and preprocessing methods to achieve above-average
results on the intended task. In fact, DL architectures have had great success in processing
difficult data over the past few years such as audio signals, images, and text, resulting in
top-tier results on a wide range of publicly available measures, such as the challenge of
visual identification on a broad scale and its expansion in industrial applications [10].

DL is a topic of machine learning that depends on how computational techniques can
learn hierarchical representations of incoming data during successive nonlinear transforma-
tions. As a result of research into the perceptron and other prior models, deep neural net-
works (DNNs) have been developed, where (1) a network of artificial “neurons” performs
a linear change on the information it receives at each successive layer and (2) a nonlinear
activation function is given the linear transformation output by each layer. It is significant
that these transformations’ parameters are directly found out by systematically reducing a
cost function. Despite the widespread use of the term “deep” that refers to neural networks,
there is no agreement on what exactly constitutes a “deep” network, and subsequently,
what actually qualifies as a deep network and what does not [11].

Acquiring and labeling EEG signals is necessary because DL requires a labeled dataset
to draw relevant conclusions and build a model that can be used to predict labels for
new inputs. The quality of the predictions made by each classifier must also be evaluated
because their abilities to extract accurate knowledge may cause them to perform differently.
While unlabeled data are what the predictions are designed for, labeled data are still
necessary for measuring their accuracy, so that for the occurrences in the evaluation dataset,
the predicted labels are contrasted with the actual labels, which are defined as the testing
data. The closer the predicted labels to the actual labels of the test data instances, the better
the knowledge extraction, which indicates the better performance of the classifier [12].

2. Literature Survey

The procedure for processing and analyzing EEG data typically consists of two steps:
extraction of feature and recognition of patterns [13,14]. Before the popularity of deep
learning, the most common way to extract features was to use signal analysis to pull out
time–frequency features, such as spectral density, density of power [15], band power [16],
separate components [17], and differential entropy [18]. The widely researched recogni-
tion on pattern and machine learning techniques contains ANN [19,20], naive Bayes [21],
support vector machines [22,23], etc. Due to deep advertising and widespread use of
DL, an ever-increasing number of neuroscience and brain study teams are discovering
its strength in building techniques to use EEGs to intelligently comprehend and analyze
brain activity, hence offering an end-to-end approach that unifies the extraction of features,
classification, and clustering. To categorize mental stresses, the authors of [24] developed
a multichannel DNN. In [25], an LSTM network was used to categorize forms of motor
imagery and extracted the network’s useful characteristics using a one-dimensional aggre-
gation approximation technique. In [26], the authors employed a CNN-based predictive
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modeling strategy for estimating the ages of brains. Their research revealed that the brain’s
ability to estimate age is extremely accurate. With their suggested spatiotemporal deep
convolution model, the authors of [27] significantly enhanced the accuracy of driver fa-
tigue detection by highlighting the significance of geographical data and the timing of
EEGs. To automatically detect epileptic convulsions in EEG recordings, further, a full-stack
multiview DL architecture was suggested in [28].

In [29], the authors attempted to build CNN with transfer learning in mind and
successfully used the model to diagnose mild depression in patients. Furthermore, a mixed
neural network of LSTM on domain of time–frequency data was trained using an activation
function of rectified linear unit (ReLU) to classify sleep stages [30]. Later on, a compact
model based on a complete convolutional network (EEGNet) was presented for EEG
for the various BCI classification tasks [31]. The authors in [32] suggested a parallel
and cascaded convolution recurrent neural network technique by efficient learning of
spatiotemporal representation to distinguish the human motion commands of actual EEG
signals. Moreover, in [33], EEG data are transformed into EEG-dependent optical flow
and video information, which is classified by RNN and CNN, for the development of a
successful BCI-based rehabilitation support system.

Large amounts of content information and varied visual qualities are packed into
multimedia data that are commonly employed in the collection and analysis of EEG
data [34–36]. Through the study of EEG signals, researchers attempted to determine and
categorize the content information of users’ watched multimedia material [37–39].

The authors of [35] created a mapping link between natural image attributes and EEG
representation using LSTM network learning to develop a model for EEG responses to
visual cues. The improved EEG signal representation was then used for the classification
of natural images. These DL-based strategies produced remarkable classification results,
especially when compared to conventional approaches.

Moreover, twenty-eight university students’ EEG data were gathered while they were
resting with their eyes closed and their eyes open; then, Fourier transform was applied
in the theta, delta, beta, and alpha bands and analyzed in nine regions across the scalp to
make estimations of total power [40]. Arousal level was also determined by measuring
skin conductance. Topographic effects of the situation are shown in Figure 1.

Resting EEG data from 70 subjects were analyzed by the authors of [41] (46 adults,
29 male), across testing sessions spaced by 12 ± 1.1 years. Alpha of EEG was separated,
quantified, and identified by applying reference-free techniques that combine principal com-
ponent analysis (PCA) with current source density (CSD). Measures of overall (EC-plus-EO)
and net (EC-minus-EO) posterior amplitude of alpha and inconsistencies in asymmetry
were compared among several trials. Waves 4 and 6 of the resting EEG’s CSD-fPCA
structure are shown in Figures 2 and 3 at 13 electrode sites common to both waves and
topographies of the mean alpha of factor scores, respectively.

Recent research has demonstrated that by mining EEG data, multimedia content
information may be reconstructed. In [34], the authors developed a strategy for deducing
the information of visual inputs from electrical brain activity. By applying generative
adversarial networks (GANs) and a variable-valued auto-encoder (VAE), they discovered
that patterns relating to visual content can be observed in EEG data, and images that are
semantically compatible with the incoming visual stimuli can be produced using the content.
Despite the fact that these techniques have proven that a DL framework may be used for
EEG-based image classification, the input is frequently the actual EEG measurements or
time–frequency properties retrieved using signal analysis methods, and certain aspects
of human brains have not been given much thought, such as hemispheric lateralization,
and the accuracy of classification produced is 82.9% [35].
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Figure 1. Environmental influences on topography (a) Delta (b) Theta (c) Alpha (d) Beta. One EEG 
band is active in each row. In the left column, we see the typical power output across all conditions. 
Power distributions for the EO and EC circumstances are displayed in the middle columns; the 
power decrease in each band when the eyelids open can be easily observed. The rightmost column 
displays standard scores representing the difference (EO-EC) at each electrode site; note the focal 
changes apparent in theta, beta, and delta bands. 
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Figure 1. Environmental influences on topography (a) Delta (b) Theta (c) Alpha (d) Beta. One EEG
band is active in each row. In the left column, we see the typical power output across all conditions.
Power distributions for the EO and EC circumstances are displayed in the middle columns; the power
decrease in each band when the eyelids open can be easily observed. The rightmost column displays
standard scores representing the difference (EO-EC) at each electrode site; note the focal changes
apparent in theta, beta, and delta bands.
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be seen in factor loadings (9.37 Hz peak; blue) and alpha of high frequency (10.15 Hz peak; red) 
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top row (EO), middle row (EC), and overall alpha (EO + EC; bottom row), independently offered 
for each wave. 

Figure 2. Waves 4 and 6 of the resting EEG’s CSD-fPCA structure with alpha prefiltering at
13 electrode locations that are shared by both waves. (A): Separation of low-frequency alpha signals
can be seen in factor loadings (9.37 Hz peak; blue) and alpha of high frequency (10.15 Hz peak; red)
from a broad delta factor (1.56 Hz peak, green). (B): Topographies of mean factor scores for EO and
EC condition (averaged of waves 6 and 4).
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Figure 3. Mean factor score alpha topographies (pooled across low- and high-frequency alpha) for
top row (EO), middle row (EC), and overall alpha (EO + EC; bottom row), independently offered for
each wave.

3. Materials and Methods

Many applications and analyses that use EEG signals require knowledge of the sub-
ject’s eye state, whether it is open or closed. DLVQ and F-FANN techniques can be used
to predict a class, or label, per each data instance, depending on the attributed values
of that instance, which makes them applicable for predicting the state of the subject’s
eyes, based on the values collected using EEG. However, in order to use a classifier in
a certain application, it is important to train that classifier using data collected from the
same environment, where each instance is labeled according to the actual state of that
instance. Thus, to use DLVQ and F-FANN techniques in predicting the state of the eye
based on the EEG signals, data must be collected from different subjects in a controlled
environment, i.e., the actual state of their eyes are logged alongside with the EEG signals.
However, DLVQ and F-FANN techniques may have different performance depending
on the input data, which imposes the need to evaluate the performance of the classifiers,
in order to select the most appropriate one. The rationale behind the comparison of DLVQ
and F-FANN in EEG signal processing is that we can demonstrate that the activations and
parameters of a neural network can be quantized using product quantization with shared
subdictionaries without materially affecting the network’s accuracy.

3.1. Data Collection and Classification

In order to train classifiers and evaluate their performances, a labeled dataset is
required so that classifiers extract the relations between the attribute values of each instance
and the label given to it, while evaluation is conducted by comparing the predictions
provided by the classifiers to the actual labels of the instances used in the evaluation.
For this purpose, the EEG data included 150 recordings from 27 participants, taking around
24 s in each condition. EEG signals are collected from a 16-channel V-AMP amplifier at
1024 samples/second, sample rate, while the impedance of the channels is maintained
below 5 kΩ. The electrodes that collect the EEG signals are positioned at (Fp2, Fp1, Fz, F3,
FCz, F4, T3, T4, CPz, Cz, Pz, P7, C3, P8, C4, and Oz). Undesired frequencies are filtered out
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using three types of filters, an 80 Hz online low-pass filter, a 0.1 Hz high-pass filter, and a
50 Hz notch filter. Moreover, two reference nodes are connected to the subject’s ears, one to
each ear. After preprocessing the signals, using the Brain Vision Analyzer, the collected
data are referenced using the average EEG of all the collected channels, per each instance,
and the sampling rate is reduced to 256 Hz. Artifact segments and epochs with amplitudes
greater than 150 µV are marked for removal for further analysis. Finally, the band power
values of the alpha, beta, delta, and theta are computed from the collected EEG signals,
which results in 64 attributes that describe each data instance in the collected dataset. When
all of the training data are utilized at once, this is called an epoch, and it is measured in
terms of the total number of training data iterations in a single cycle.

The performance of DLVQ and F-FANN is evaluated in this study in order to select
the classifier with the best performance for EEG signal classification, to forecast the state of
the subject’s eye, depending on the data extracted from the EEG signals. The data collected
from EEG signals are used to train the DL techniques and evaluate their performance,
which reflects the quality of the knowledge extracted from the training data.

3.2. Deep Learning Vector Quantizer

It is possible to obtain a frame-level codeword and initial codebook sequence using
the level structured k-means using VQ approach described in [42]. These data can then be
used for DLVQ. DLVQ is based on the LVQ principle, which has been found to be helpful
in several disciplines, including ASR and text classification, and uses the power of deep
learning simultaneously. However, the difference between this method and the method
given in [42] is that in this study, it is applied on brain signals and not on heart signals,
and comparison is carried out between DLVQ and F-FANN on EEG signals.

3.2.1. DLVQ System Structure

Similar to the DLVQ approach used in [42], which employs DNN as a code-book
learner and VQ, this study follows the same basic outline. As with DNN-based ASR,
a DNN can be trained using the frame-level label information provided from the initial
quantizer. Figure 2 depicts the overarching framework of the training program. K-means
is used to first learn an initial codebook using training frames (No enclosing contexts are
employed). Then, using normal VQ, each frame’s codeword is acquired. Finally, a DNN is
trained using optimization objective for cross-entropy, with the codeword serving as the
class target for every individual frame.

3.2.2. DNN Training

A core frame was spliced into the DNN’s input (whose label is the splice label) and
its left and right sides have n context frames, e.g., n = 6 or n = 8. The sigmoid units were
used to build the hidden layers, and a softmax layer was used for the output. It has
exactly the same number of nodes as the VQ initializer’s codeword. DNN’s fundamental
structure is depicted in Figure 4. In particular, an expression for the node values looks like
Equations (1) and (2),

vxi& =

{
Wight1ot + bv1, i = 1
Wightiyi + bvi, i > 1

(1)

vyi& =

{
sigmoid

(
xi), i < tn

softmax
(
xi), i = tn

(2)

where bv1, bvi are the bias vectors; tn is the softmax and sigmoid functions; and the
total number of hidden layers are element-wise operations. The vector vxi corresponds
to activations of prenonlinearity and vyi is the vector of neuron at the ith hidden layer.
Codeword posterior estimates were derived from the softmax outputs as in Equation (3):

P
(
CWj | ot

)
= En

t (j) =
exp(xn

t (j))
∑i exp(xn

t (i))
(3)
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where CWj represents the jth codeword and En
t (j) is the jth element of En

t (j).
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Through increasing the log posterior probability across the training frames, DNN was
trained. This is the same as trying to minimize the loss function with the largest negative
cross-entropy. Let X represent the entire training set with N frames, i.e., x0

1:N∈X, then the
loss with respect to X is given by Equation (4):

L1:N = −
N

∑
t=1

J

∑
j=1

lt(j) log P
(
CWj | ot

)
(4)

where P
(
CWj | ot

)
is mentioned in Equation (3); lt is the vector of label at frame t, which

is the pseudo one obtained from the initializer of k-means VQ. Utilizing error backprop-
agation, we are able to reduce the loss objective function, which is a gradient-descent-
dependent optimization technique that is advanced for neural networks. Calculating
partial derivatives of the function of loss objective in relation to the output layer’s prenon-
linearity activations Xn will produce the vector of error to be backpropagated to the previous
hidden layers. In the previous hidden layer, backpropagated error vectors are described in
Equations (5) and (6):

εn
t =

∂L1:N
∂xn = En

t − lt (5)

εi
t = WT

i+1εi+1
t ∗ yi ∗

(
1− Ei

)
, i < n (6)

where ∗ refers to element-wise multiplication. Vectors of error from specific hidden layers
combined with the overall gradient with respect to the matrix of weight through training
Wi are computed by Equation (7):

∂L1:N
∂Wi

= Ci−1
1:N

(
εi

1:N

)T
(7)

From Equation (7), it is observed that above both Ci−1
1:N and εi

1:N are measures, which
are constructed by stringing together vectors representing each training frame, from frame
1 to frame N, i.e., εi

1:N 1: N = [εi
1, . . . , εi

t, . . . , εi
N]. Parameters are recalculated using the

gradient in Equation (7), a batch-based gradient-descent update, only once. Parallelization
can thus be readily carried out to hasten the learning process after each sweep across the
entire training set. Stochastic gradient descent (SGD), on the other hand, typically functions



Electronics 2022, 11, 4029 8 of 16

more effectively in practice. This is because SGD assumes that the true gradient may be ap-
proximated by the gradient at a single frame t, i.e., Ci−1

1
(
εi

1
)T , and each frame’s parameters

are updated immediately after viewing. The minibatch SGD is more popular because all of
the matrices fit into the GPU memory due to the minibatches’ appropriate size, resulting
in a more computationally efficient learning procedure. In this work, the parameters are
updated using minibatch SGD.

In order to maximize the accuracy of the DNN, it is best to train it with a cross-entropy
loss function that minimizes the likelihood that it will forget any labels it has been given
by its initializer of VQ; that is, a “perfect” training cycle will enable the DNN to achieve
the same VQ outcomes as its initializer. In contrast, low frame accuracy was reported
throughout the realistic training approach: less than half for the testing and training data.
This shows that DNN is capturing new information in the input rather than learning exactly
what its initializer does.

3.3. Feedforward Artificial Neural Network

F-FANN is implemented to predict the state of the eye, depending on the input
values collected from the EEG signals. As each instance consists of a one-dimensional
vector, with 64 values, the implemented neural network uses only fully connected layers.
According to the number of attributes in the data, the number of neurons in the input
layer is set to 64 neurons: 1 neuron per each input value. This input layer is linked to the
first hidden layer, which consists of 256 neurons. In addition to this hidden layer, 3 more
hidden layers are used before the output layer, with 256, 128 and 64 neurons, sequentially,
producing a total of 4 hidden layers. The output layer consists of a single neuron, as a
single output is required from the neural network to describe the probability of the input
to be collected from a subject with EC state. A summary of the implemented feedforward
artificial neural network is shown in Figure 5.
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The use of such topology allows for the extraction of complex features, from the input,
without dramatically increasing the complexity of the computation in the neural network,
which requires more computer resources or execution time. Moreover, according to the
benefits of the ReLU activation function, including the faster learning and elimination of the
vanishing gradient problem, all hidden layers use this activation function. As the output
required from the neural network is limited to the range from zero to one, this neuron
uses the Sigmoid activation function. In artificial neural networks, overfitting occurs
when the neural network is emphasized on a certain path, among neurons, to reach the
required solution. As the training continues in an overfitted neural network, more emphasis
is added to that batch, by amplifying the weights among neurons in that path, during
backpropagation. Thus, to avoid such behavior, a predefined percentage of the neurons
in every layer are dropped through the training, which is defined as the dropout rate.
These neurons are selected randomly per each training epoch, so that the neural network is
enforced to find multiple paths to come up with the same prediction. Relying on different
features, enforced by the dropout, the output of the neural network considers all these
features, which eliminates the errors that may occur according to the strict reliance on a
certain feature. Figure 5 illustrates an example of dropout during training.
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4. Performance Evaluation and Results

In order to choose the classifier with the best assessment in EEG signal classification,
to predict the eye state of the subject, predictions provided by each DL classifier are
compared to the original states of the eyes in the dataset, by distributing these predictions
and the actual states in the confusion matrix. The true EO represents the number of
instances that are collected from subjects with their eyes open and forecasted by the DL
classifier as EO. False EO is the number of instances that have EO labels, while the classifier
predicts them as EC. True EC represents the number of EC instances that are correctly
predicted by the classifier as EC, while false EC is the number of EO instances that are
predicted as EC by the classifier. Using the values in the confusion matrix created based
on the classification results of a certain classifier, the measures of performance are applied
to describe the performance of that classifier. Thus, the accuracy of the predictions is
calculated using Equation (8). Moreover, the precisions of the predictions provided for the
EO and EC classes are shown in Equations (9) and (11) sequentially, while the recalls of each
of these classes are calculated using Equations (10) and (12). These values are then used
to calculate the F Scores for the EO and EC classes, according to Equations (13) and (14).
Moreover, as some of the applications that rely on EEG classification to estimate the state
of the subject’s eye require faster decisions, the average time required by each classifier
to produce a prediction for a single instance is also measured. Based on these measures,
the DL techniques with the best performance can be selected for the purpose of eye state
prediction based on the EEG signals.

ACC =
True EC + True Eo

True EC + False EC + True EO + False EO
(8)

PrecisionEC =
True EC

True EC + False EC
(9)

RecallEC =
True EC

True EC + False EO
(10)

PrecisionEO =
True EO

True EO + False EC
(11)

RecallEO =
True EO

True EO + False EC
(12)

F ScoreEO = 2× PrecisionEO × RecallEO

PrecisionEO + RecallEO
(13)

F ScoreEC = 2× PrecisionEC × RecallEC

PrecisionEC + RecallEC
(14)

Each channel’s EEG signal is first adjusted to one variance and zero mean. Additionally,
it is segmented into adjacent frames (each one lasts for one second, which is equivalent to
the length of one hundred and fifty samples). The result is 10 frames transmitted on each
channel. Figure 6 shows an illustration of this procedure.

Three level-structured k-means VQ systems were developed for use as benchmarks.
with 128 (8 clusters on first level, and 4 on the second level) 256 (three levels with 16, 4 and
2 clusters in every level), and 512 (4 levels with 32, 8, 16, and 4 clusters in each level)
codewords characterized by 128 k-means, 256 k-means, and 512 k-means.

The number of times each codeword appears in an audio EEG clip was used to create
the BoW vector representation of that clip. The pseudo codeword labels produced by the
systems of baseline k-means were used to build DLVQ systems. The input of all DNNs
is a splice of the center frame and its 8 context frames, and each layer of the 7 hidden
layers has 2048 nodes as in [42]. Each system’s output softmax layer shares the same
dimensionality as the codebook vocabulary of its respective VQ initializer system, that is,
128, 256, and 512, respectively. Based on the Kaldi voice recognition tools, we developed the
DNN systems. The DNN is trained using the following method: layer-by-layer generative
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pretraining is used for parameter initialization. As a next step, we use backpropagation and
the cross-entropy goal function to train the network discriminatively. The initial learning
rate is set at 0.09, and the minibatch size is set to 256. Then, frame accuracy is checked
on the development set after every training iteration, the learning rate is reduced by a
factor of 0.5% if the improvements are less than 0.5%. After the accuracy of frame enhance-
ment drops to less than 0.1%, the training procedure is terminated. The 128-codeword
k-means-based DNN trained in practice obtained 34% frame accuracy on the training and
test datasets, respectively; the 256-codeword k-means model obtained 23% and 29%, respec-
tively; the model dependent on 512-codeword k-means obtained 24% and 27%. Figure 5
shows these findings, which show that the frame EEG accuracy-shifting tendencies in the
training and development set are similar and primarily growing. This demonstrates that the
DNN can successfully imitate its VQ initializer through cross-entropy training (the “labels”
by k-means VQ being retained); however, because the accuracy of the last frame was below
50%, we may infer that the DNN is not figuring out the specifics of its initializer’s operation,
but rather is actively gathering fresh data. The representation of BoW of an audio EEG
clip was then made by running the clip’s frames through a trained DNN and adding up
the resulting vectors. For both the baseline and suggested frameworks, as a histogram,
the properties of the BoW vector representation for each clip were normalized so that they
added up to 1. HIK kernel and SVMs were applied as the classifiers. It is evident that in
MAP, DLVQ achieves a 4.5% relative increase over the k-means baseline. An approximate
10.5% relative gain was obtained when fusing the findings of the baseline and proposed
systems. DLVQ picks up some supplementary data that k-means miss. According to their
AP scores on the development set, the two systems’ classifier scores from the basic late
fusion approach are simply weighted together. These encouraging results demonstrate that
DLVQ does aid in improving the representative power of VQ-based BoW vectors. Figure 7
offers the accuracy of DLVQ with different codebooks in training sets. Figure 8 offers the
accuracy of DLVQ with different codebooks in development sets.
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The F-FANN is implemented using the Keras library and evaluated using the 5-fold
cross-validation method. Per each iteration in the cross-validation, the model is trained for
1000 epochs using the training bins and evaluated using the testing bin. These results are
used to calculate the performance evaluation measures. The average time consumed by
the feedforward artificial neural network to come up with a prediction per data instance is
0.009 ms.

The results show that DLVQ scores better overall accuracy than the feedforward
neural network. Higher precision is scored by the feedforward artificial neural network
in predicting the EO state, while higher recall is scored in the EC predictions. However,
the F score for both states is equal, which is 91%. Thus, the overall F score scored 91% as
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well. Figure 9 illustrates the accuracy of F-FANN in training sets, while Figure 10 shows
the accuracy of F-FANN in development sets. Tables 1 and 2 also the Figures 11 and 12
offer the precision, recall, and F score for DLVQ and F-FANN, respectively.
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Table 1. Precision, recall, and F score for DLVO.

Class Precision Recall F Score

EO 90 92 91
EC 92 90 91
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Table 2. Precision, recall, and F score for F-FANN.

Class Precision Recall F Score

EO 80 82 81

EC 82 80 81
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F-FANN shows the highest overall performance measure, with an average prediction
time of 0.009 mS per each data instance. Moreover, DLVQ is also able to average a prediction
time of 0.074 mS.
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5. Limitations and Optimal Points

Large volumes of data are a major roadblock for this proposed work. It can be costly
to train it using huge and complicated data models. A lot of hardware is also required
to perform complicated mathematical computations. There is no standard or single way
to choose DL tools. It is not always possible to obtain answers using DL algorithms
when dealing with interdisciplinary issues. With DL, a perfect solution might not always
be possible. Inaccurate or incorrect output might result from poor-quality, incomplete,
or incorrect data. In fact, DL may not be able to answer issues that are not provided in a
classification format, as its methods are optimized for such situations.

The optimal points are briefed as follows: the best features of the proposed system are
DLVQ and F-FANN, which perform well with unstructured or unlabeled data, as there are
different DL algorithms, libraries, and open-source frameworks available. The number of
practical uses for them is extensive, scalable, and efficient.

DLVQ and F-FANN make it easier to automatically recognize features without first
extracting those characteristics. One neural network-based technique may be modified and
applied to a variety of data kinds and applications, since it is a resilient system.

6. Conclusions and Recommendation

In this paper, EEG signals were collected from 27 participants in order to evaluate
the performance of 3 of the DL techniques, namely DLVQ and F-FANN, to predict the
state of the subject’s eye based on the collected EEG signals. The collected data were
split into five bins, where each bin was used once for evaluation while the remaining bins
were used for training, using a 5-fold cross-validation evaluation approach. This approach
ensures unbiased evaluation, where data instances in a randomly selected testing set may be
more suitable for one classifier than another, which produces biased evaluation measures.
DLVQ showed the highest overall performance measure. Additionally, we provide a
discriminative approach to LVQ in this research, employing a DL framework to extract
a superior VQ representation from the initializer baseline VQ systems. When combined
with its k-means VQ initializer, the DLVQ system is able to capture novel information and
achieve a highly encouraging relative performance improvement.

There are still many areas where DL techniques in training may be enhanced. We would
also like to examine DLVQ’s and F-FANN’s performance in other fields, such as computer
vision, and investigate the theoretical relationship between DLVQ and its initializers.
Furthermore, the integration of DLVQ and F-FANN with preexisting technology has be-
come more feasible, including the brain–computer interface, big data, and the Internet of
things (IoTs).
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