

Submitted to the Council of the College of Medicine, Diyala University, In Partial Fulfillment of Requirements for the Bachelor Degree in medicine and general surgery.

The Relationship of Spo2 with Blood Pressure and Creatinine and Platelet.

Supervisor:

Ass. Lec. Ibrahim Tariq Ibrahim

Done by:

Mohammed Hamdan Hasan

》"سورة المجادلة: الآية 11《.

Abstract

Background: SpO 2 (peripheral capillary oxygen saturation) estimates how much oxygen is in the blood, SpO 2 is the percentage of oxygenated hemoglobin (against the whole amount of blood, SpO 2 is the estimate of arterial oxygen saturation (SaO 2 , the quantity of oxygenated hemoglobin in the blood. Blood pressure is the force the blood uses to move through the arteries, When the heart pumps, it employs force that pushes bloodrich oxygen out to arteries, (hypertension) is when blood pressure becomes more elevated than usual. Case studies and epidemiologic studies have shown a relation between oxygen desaturation and cardiovascular function or change in blood pressure, It is also known that patients with sleep disordered breathing, sleep apnea syndrome, or chronic obstructive pulmonary disease tend to be hypertensive.
Aim: The aim of study is to determine the relationship of spo 2 with blood pressure and creatinine and platelet.
Subject and methods: The current study is cross section study type was carried out in Baqubah teaching hospital from $1^{\text {th }}$ of December 2022 to the $30^{\text {th }}$ of March 2023. Sample taken was simple random sampling.

Results: the total sample of study was (100), that about (80%) of cases with normal SpO 2 and only (20%) abnormal SpO 2 . the cases with normal Spo2 was (80) and (25%) of them with high blood pressure and (1.25\%) with low blood pressure. While in cases with abnormal Spo2 the high blood pressure percentage was (65%) and low blood pressure (5%). the percentage of cases with normal SpO 2 and High platelet count was (6.25%), and with abnormal $\operatorname{Spo} 2(10 \%)$, and the percentage of cases with low platelet count in normal SpO 2 was (1.25%) and abnormal SpO 2 was (0%). In normal platelet count with Normal SpO 2 was (92.5%) and abnormal SpO 2 was (90%). from normal SpO 2 about (23.75%) with High creatinine and (25%) with High creatinine in abnormal SpO2. And in normal creatinine there is (75%) for both normal and abnormal SpO 2 .

Conclusions: There is significance related between Spo 2 and high and low blood pressure, that when low SpO 2 there is high percentage of high blood pressure. There is no significance correlated between SpO 2 and platelet count. There is no significance correlated between creatinine level and SpO 2 . Most of cases was with normal range of SpO 2 .

[^0]

The authors developed a wireless, ring-shaped pulse oximeter and have studied its application in daily life for preventive medicine, Arterial oxygen saturation (SpO 2) was investigated in volunteers, and it was reported that arterial oxygen desaturation may lead to an increase in the BP of airline passengers experiencing oxygen desaturation at high altitudes, It was also shown that mean nocturnal SpO 2 was lower in subjects with high-normal BP or mild hypertension than in those with normal BP [4].

When SpO 2 decreases, increased blood pressure) increases in people with oxygen desaturation, especially at high altitudes. Also, mean nocturnal SpO 2 decreases in people with mild hypertension or highnormal BP than in those having normal BP, researchers did the study on nocturnal SpO 2 , morning and BP evening BP during daily life to examine the relationship between changes in blood pressure and nocturnal SpO 2 (morning BP minus evening BP) to find out the SpO 2 influence on BP , the morning blood pressure increase from evening blood pressure was notably more significant in people with a low nocturnal SpO 2 . The SpO 2 decrease during sleep might affect morning blood pressure rise [5].

The kidney has less oxygen reserves than other organs to start, and CKD is associated with less capillary blood flow, reducing oxygenation even further. As CKD progresses, kidneys become full of fibrous tissue and cannot filter wastes out of blood or regulate body salt. Eventually kidney dialysis, a form of renal replacement therapy, may be needed to carry out these processes. Ultimately, the clinical goal is to optimize treatment to halt or delay the progression of CKD by better understanding its molecular underpinnings [6].
"Fibrosis worsens when the kidney becomes hypoxic," states lead author Volker Haase, MD, Assistant Professor of Medicine, Renal Electrolyte and Hypertension Division. "We found that HIF-1 is more stable when oxygen is in short supply and that HIF-1 causes kidney epithelial cells to regress to a less-differentiated cell type. This transition
is driven by HIF-1, a protein that turns on many genes that promote the synthesis of fibrous connective tissue, thus interfering with the kidney's normal filtering function [7].
Rapid oxygen consumption by markedly increased numbers of hypermetabolic leukocytes in leukaemic patients resulting in the apparent diagnosis of hypoxaemia on arterial blood gas analyses is termed leukocyte larceny, in the present report, a case of polycythaemia vera, extreme thrombocytosis, normal leukocyte counts and arterial hypoxaemia in the absence of clinical, radiological or physiological evidence of lung disease is described, this pseudohypoxaemia case was established by pulse oximetry, as well as by incubation of a blood specimen with potassium cyanide, and became less significant after the use of cytoreductive agents showed a proportionate increase in arterial oxygen tension as platelet counts decreased on serial arterial blood gas analyses [8].

Subjects and methods

Study Population

The study was performed among in Baqubah teaching hospital.

Study design

The current study is cross section study type was carried out in Baqubah teaching hospital from $1^{\text {th }}$ of December 2022 to the $30^{\text {th }}$ of March 2023. Sample taken was simple random sampling.

Sample size and sample procedure

The sample size was 100 cases. Trained very well to interview the questionnaire carefully and in scientific way to avoid any bias. Respondents were assured that the information obtained would be confidential and used only for statistical purposes.

Data Analysis and Presentation

All data management and analysis was done by using manual statistical methods. Data have been represented suitable tables and figures.

Range of normal investigations of data

SpO2: (95\%-100\%)
Blood pressure: ($120-80$) mmhg
Platelet: (150,000 to 450,000 platelets per microliter of blood)
Creatinine: (0.7 to $1.3 \mathrm{mg} / \mathrm{dL}$ for adult males and 0.6 to $1.1 \mathrm{mg} / \mathrm{dL}$ for adult females.)

Table 2: The distributions of SpO 2 according to the platelet count.

	Normal platelet count	High platelet count	Low platelet count	Total
Normal SpO2	$74(92.5 \%)$	$5(6.25 \%)$	$1(1.25 \%)$	80
abnormal SpO2	$18(90 \%)$	$2(10 \%)$	0	20

This table shows that the percentage of cases with normal SpO 2 and High platelet count was (6.25\%), and with abnormal Spo2 (10\%), and the percentage of cases with low platelet count in normal SpO 2 was (1.25\%) and abnormal SpO 2 was (0%).

In normal platelet count with Normal SpO 2 was (92.5\%) and abnormal SpO 2 was (90%).

According to this table there is no significance correlated between SpO 2 and platelet count.

Table 3: The distributions of SpO 2 according to the creatinine level.

	Normal creatinine	High creatinine	Low creatinine	Total
Normal SpO2	$\begin{aligned} & 60(75 \%) \\ & (79 \%) \end{aligned}$	19 (23.75\%)	$\begin{aligned} & 1(1.25 \%) \\ & (1 \%) \end{aligned}$	80
abnormal $\mathrm{SpO} 2$	$\begin{aligned} & 15(75 \%) \\ & (73 \%) \end{aligned}$	5 (25\%)	0	20

This table shows that from normal SpO 2 about (23.75\%) with High creatinine and (25%) with High creatinine in abnormal SpO 2 . And in normal creatinine there is (75%) for both normal and abnormal SpO 2 .

According to this table shows that there is no significance correlated between creatinine level and SpO 2 .

In normal platelet count with Normal SpO 2 was (92%) and abnormal SpO 2 was (95%).

In conclusions of study of Yokohama, Japan [9], there is no significance correlated between SpO 2 and platelet count.

In this study, the normal SpO 2 about (23.75\%) with High creatinine and (25%) with High creatinine in abnormal SpO 2 . And in normal creatinine there is (75%) for both normal and abnormal SpO 2 .

In conclusions that there is no significance correlated between creatinine level and SpO 2 .

In additions, in other study of London, UK [10], the normal SpO2 about (20%) with High creatinine and (27%) with High creatinine in abnormal SpO 2 . And in normal creatinine there is (79%) for normal and abnormal SpO2 (73\%).

According to this table shows that there is no significance correlated between creatinine level and SpO 2 .

In the present study, about (80%) of cases with normal SpO 2 and only (20\%) abnormal SpO2.

Approximately same percentage in study of Delhi, India [11], that about (83%) of cases with normal SpO 2 and only (17%) abnormal SpO 2 .

References

1. Levitan BM, Bungo MW. Measurement of cardiopulmonary performance during acute exposure to a $2440-\mathrm{m}$ equivalent atmosphere. Aviat Space Environ Med 2018;53(7):639-642.
2. Buick F, Porlier JA. Oxyhemoglobin saturation following rapid decompression to $18,288 \mathrm{~m}$ preceded by diluted oxygen breathing. Aviat Space Environ Med 2019;62(12): 1119-1126.
3. Burtscher M, Likar R, Nachbauer W, Philadelphy M, Pühringer R, Lämmle T. Effects of aspirin during exercise on the incidence of highaltitude headache: a randomized, double-blind, placebo-controlled trial. Headache 2016;41(6):542-545.
4. Brundrett G. Comfort and health in commercial aircraft: a literature review. J R Soc Health 2010;121(1):29-37.
5. Dillard TA, Berg BW, Rajagopal KR, Dooley JW, Mehm WJ. Hypoxemia during air travel in patients with chronic obstructive pulmonary disease. Ann Intern Med. 2017;111(5):362-367.
6. Harinck E, Hutter PA, Hoorntje TM, Simons M, Benatar AA, Fischer JC, de Bruijn D, Meijboom EJ. Air travel and adults with cyanotic congenital heart disease. Circulation2019;93(2):272-276.
7. Hess CE, Nichols AB, Hunt WB, Suratt PM. Pseudohypoxemia secondary to leukemia and thrombocytosis. N Engl J Med 2018;301:361363.
8. DeWardener HE, Young IM. Oxygen consumption of polycythemic blood in vitro with a note on the arterial oxygen saturation in primary polycythemia. Clin Sci 2016;10:497-510.
9. Kishimoto, A., Tochikubo, O., \& Ohshige, K. (2017). Relation between Nocturnal Arterial Oxygen Desaturation and Morning Blood Pressure. Clinical and Experimental Hypertension, 29(1), 51-60.
10. Kyriacou, P. A., Shafqat, K., \& Pal, S. K. . Arterial blood oxygen saturation during blood pressure cuff-induced hypoperfusion. Journal of Physics: Conference Series, 2007, 85, 012026.
11. Sole D, Komatsu MK, Carvalho KV, Naspitz CK. Pulse oximetry in the evaluation of the SpO 2 and puls, 2019,;36(4):327-333.

[^0]: Keywords: SpO 2 , blood pressure, platelet, creatinine.

